Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
Genes (Basel) ; 15(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38674332

RESUMO

Diets high in saturated fatty acids are associated with obesity and infertility. Palmitate, the most prevalent circulating saturated fatty acid, is sensed by hypothalamic neurons, contributing to homeostatic dysregulation. Notably, palmitate elevates the mRNA levels of gonadotropin-releasing hormone (Gnrh) mRNA and its activating transcription factor, GATA binding protein 4 (Gata4). GATA4 is essential for basal Gnrh expression by binding to its enhancer region, with Oct-1 (Oct1) and CEBP-ß (Cebpb) playing regulatory roles. The pre- and post-transcriptional control of Gnrh by palmitate have not been investigated. Given the ability of palmitate to alter microRNAs (miRNAs), we hypothesized that palmitate-mediated dysregulation of Gnrh mRNA involves specific miRNAs. In the mHypoA-GnRH/GFP neurons, palmitate significantly downregulated six miRNAs (miR-125a, miR-181b, miR-340, miR-351, miR-466c and miR-503), and the repression was attenuated by co-treatment with 100 µM of oleate. Subsequent mimic transfections revealed that miR-466c significantly downregulates Gnrh, Gata4, and Chop mRNA and increases Per2, whereas miR-340 upregulates Gnrh, Gata4, Oct1, Cebpb, and Per2 mRNA. Our findings suggest that palmitate may indirectly regulate Gnrh at both the pre- and post-transcriptional levels by altering miR-466c and miR-340, which in turn regulate transcription factor expression levels. In summary, palmitate-mediated dysregulation of Gnrh and, consequently, reproductive function involves parallel transcriptional mechanisms.


Assuntos
Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina , MicroRNAs , Palmitatos , MicroRNAs/genética , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Animais , Palmitatos/metabolismo , Camundongos , Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Hipotálamo/metabolismo
2.
Biochem Biophys Res Commun ; 703: 149671, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38367515

RESUMO

Interleukin-27 (IL-27) is a recently discovered cytokine that has been implicated in inflammatory and metabolic conditions, such as atherosclerosis and insulin resistance. However, the mechanisms by which IL-27 attenuates hepatic lipid accumulation in hyperlipidemic conditions and counteracts endoplasmic reticulum (ER) stress, a known risk factor for impaired hepatic lipid metabolism, have not been elucidated. This in vitro study was designed to examine the effect of IL-27 on hepatic lipid metabolism. The study included the evaluation of lipogenesis-associated proteins and ER stress markers by Western blotting, the determination of hepatic lipid accumulation by Oil Red O staining, and the examination of autophagosome formation by MDC staining. The results showed that IL-27 treatment reduced lipogenic lipid deposition and the expression of ER stress markers in cultured hepatocytes exposed to palmitate. Moreover, treatment with IL-27 suppressed CD36 expression and enhanced fatty acid oxidation in palmitate-treated hepatocytes. The effects of IL-27 on hyperlipidemic hepatocytes were attenuated when adenosine monophosphate-activated protein kinase (AMPK) or 3-methyladenine (3 MA) were inhibited by small interfering RNA (siRNA). These results suggest that IL-27 attenuates hepatic ER stress and fatty acid uptake and stimulates fatty acid oxidation via AMPK/autophagy signaling, thereby alleviating hepatic steatosis. In conclusion, this study identified IL-27 as a promising therapeutic target for nonalcoholic fatty liver disease (NAFLD).


Assuntos
Interleucina-27 , Hepatopatia Gordurosa não Alcoólica , Humanos , Interleucina-27/metabolismo , Interleucina-27/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Hepatócitos/metabolismo , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Palmitatos/farmacologia , Palmitatos/metabolismo
3.
Cell Death Dis ; 15(1): 31, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212315

RESUMO

Maternal obesity increases the risk of childhood obesity and programs the offspring to develop metabolic syndrome later in their life. Palmitate is the predominant saturated free fatty acid (FFA) that is transported across the placenta to the fetus. We have recently shown that saturated FFA in the maternal circulation as a result of increased adipose tissue lipolysis in third trimester of pregnancy induces trophoblast lipoapoptosis. Here, we hypothesized that palmitate induces integrated stress response by activating mitogen-activated protein kinases (MAPKs), endoplasmic reticulum (ER) stress and granular stress and lipoapoptosis in trophoblasts. Choriocarcinoma-derived third-trimester placental trophoblast-like cells (JEG-3 and JAR) referred as trophoblasts were exposed to various concentrations of palmitate (PA). Apoptosis was assessed by nuclear morphological changes and caspase 3/7 activity. Immunoblot and immunofluorescence analysis was performed to measure the activation of MAPKs, ER stress and granular stress response pathways. Trophoblasts exposed to pathophysiological concentrations of PA showed a concentration-dependent increase in trophoblast lipoapoptosis. PA induces a caspase-dependent trophoblast lipoapoptosis. Further, PA induces MAPK activation (JNK and ERK) via phosphorylation, and activation of ER stress as evidenced by an increased phosphorylation eIF2α & IRE1α. PA also induces the activation of stress granules formation. Two pro-apoptotic transcriptional mediators of PA-induced trophoblast lipoapoptosis, CHOP and FoxO3 have increased nuclear translocation. Mechanistically, PA-induced JNK is critical for trophoblast lipoapoptosis. However, PA-induced activation of ERK and stress granule formation were shown to be cell survival signals to combat subcellular stress due to PA exposure. In conclusion, PA induces the activation of integrated stress responses, among which small molecule inhibition of JNK demonstrated that activation of JNK is critical for PA-induced trophoblast lipoapoptosis and small molecule activation of stress granule formation significantly prevents PA-induced trophoblast lipoapoptosis.


Assuntos
Palmitatos , Obesidade Infantil , Criança , Feminino , Humanos , Gravidez , Palmitatos/farmacologia , Palmitatos/metabolismo , Linhagem Celular Tumoral , Endorribonucleases , Placenta/metabolismo , Proteínas Serina-Treonina Quinases , Apoptose , Proteínas Quinases Ativadas por Mitógeno , Estresse do Retículo Endoplasmático , Trofoblastos/metabolismo
4.
Fitoterapia ; 173: 105803, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171388

RESUMO

Type 2 diabetes milletus (T2DM) is a complex multifaceted disorder characterized by insulin resistance in skeletal muscle. Phyllanthus niruri L. is well reported sub-tropical therapeutically beneficial ayurvedic medicinal plant from Euphorbiaceae family used in various body ailments such as metabolic disorder including diabetes. The present study emphasizes on the therapeutic potential of Phyllanthus niruri L. and its phytochemical(s) against insulin resistance conditions and impaired antioxidant activity thereby aiding as an anti-hyperglycemic agent in targeting T2DM. Three compounds were isolated from the most active ethyl acetate fraction namely compound 1 as 1-O-galloyl-6-O-luteoyl-ß-D-glucoside, compound 2 as brevifolincarboxylic acid and compound 3 as ricinoleic acid. Compounds 1 and 2, the two polyphenols enhanced the uptake of glucose and inhibited ROS levels in palmitate induced C2C12 myotubes. PNEAF showed the potent enhancement of glucose uptake in palmitate-induced insulin resistance condition in C2C12 myotubes and significant ROS inhibition was observed in skeletal muscle cell line. PNEAF treated IR C2C12 myotubes and STZ induced Wistar rats elevated SIRT1, PGC1-α signaling cascade through phosphorylation of AMPK and GLUT4 translocation resulting in insulin sensitization. Our study revealed an insight into the efficacy of marker compounds isolated from P. niruri and its enriched ethyl acetate fraction as ROS scavenging agent and helps in attenuating insulin resistance condition in C2C12 myotubes as well as in STZ induced Wistar rat by restoring glucose metabolism. Overall, this study can provide prospects for the marker-assisted development of P. niruri as a phytopharmaceutical drug for the insulin resistance related diabetic complications.


Assuntos
Acetatos , Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Phyllanthus , Ratos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1 , Ratos Wistar , Estrutura Molecular , Fibras Musculares Esqueléticas , Insulina/metabolismo , Palmitatos/metabolismo , Músculo Esquelético/metabolismo
5.
Cells ; 12(24)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132105

RESUMO

Type 2 diabetes (T2D) has a complex pathophysiology which makes modeling the disease difficult. We aimed to develop a novel model for simulating T2D in vitro, including hyperglycemia, hyperlipidemia, and variably elevated insulin levels targeting muscle cells. We investigated insulin resistance (IR), cellular respiration, mitochondrial morphometry, and the associated function in different T2D-mimicking conditions in rodent skeletal (C2C12) and cardiac (H9C2) myotubes. The physiological controls included 5 mM of glucose with 20 mM of mannitol as osmotic controls. To mimic hyperglycemia, cells were exposed to 25 mM of glucose. Further treatments included insulin, palmitate, or both. After short-term (24 h) or long-term (96 h) exposure, we performed radioactive glucose uptake and mitochondrial function assays. The mitochondrial size and relative frequencies were assessed with morphometric analyses using electron micrographs. C2C12 and H9C2 cells that were treated short- or long-term with insulin and/or palmitate and HG showed IR. C2C12 myotubes exposed to T2D-mimicking conditions showed significantly decreased ATP-linked respiration and spare respiratory capacity and less cytoplasmic area occupied by mitochondria, implying mitochondrial dysfunction. In contrast, the H9C2 myotubes showed elevated ATP-linked and maximal respiration and increased cytoplasmic area occupied by mitochondria, indicating a better adaptation to stress and compensatory lipid oxidation in a T2D environment. Both cell lines displayed elevated fractions of swollen/vacuolated mitochondria after T2D-mimicking treatments. Our stable and reproducible in vitro model of T2D rapidly induced IR, changes in the ATP-linked respiration, shifts in energetic phenotypes, and mitochondrial morphology, which are comparable to the muscles of patients suffering from T2D. Thus, our model should allow for the study of disease mechanisms and potential new targets and allow for the screening of candidate therapeutic compounds.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Animais , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Roedores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Hiperglicemia/metabolismo , Palmitatos/metabolismo , Trifosfato de Adenosina/metabolismo
6.
J Cell Sci ; 136(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815440

RESUMO

Skeletal muscle insulin resistance, a major contributor to type 2 diabetes, is linked to the consumption of saturated fats. This insulin resistance arises from failure of insulin-induced translocation of glucose transporter type 4 (GLUT4; also known as SLC2A4) to the plasma membrane to facilitate glucose uptake into muscle. The mechanisms of defective GLUT4 translocation are poorly understood, limiting development of insulin-sensitizing therapies targeting muscle glucose uptake. Although many studies have identified early insulin signalling defects and suggest that they are responsible for insulin resistance, their cause-effect has been debated. Here, we find that the saturated fat palmitate (PA) causes insulin resistance owing to failure of GLUT4 translocation in skeletal muscle myoblasts and myotubes without impairing signalling to Akt2 or AS160 (also known as TBC1D4). Instead, PA altered two basal-state events: (1) the intracellular localization of GLUT4 and its sorting towards a perinuclear storage compartment, and (2) actin filament stiffness, which prevents Rac1-dependent actin remodelling. These defects were triggered by distinct mechanisms, respectively protein palmitoylation and endoplasmic reticulum (ER) stress. Our findings highlight that saturated fats elicit muscle cell-autonomous dysregulation of the basal-state machinery required for GLUT4 translocation, which 'primes' cells for insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Palmitatos/farmacologia , Palmitatos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 4 , Insulina/metabolismo , Músculo Esquelético/metabolismo , Transporte Proteico , Citoesqueleto de Actina/metabolismo , Glucose/metabolismo
7.
Biochem Pharmacol ; 217: 115815, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741512

RESUMO

Hepatic endoplasmic reticulum (ER) stress is a contributing factor in the development of hepatic steatosis in obesity. Madecassoside (MA), a pentacyclic triterpene derived from Centella asiatica, is known for its anti-inflammatory properties in the treatment of skin wounds. However, the impact of MA on hepatic ER stress and lipid metabolism in experimental obesity models has not been investigated. In this study, we examined the effects of MA on primary hepatocytes treated with palmitate and the livers of mice fed a high-fat diet (HFD). Our findings demonstrated that MA treatment reduced lipogenic lipid accumulation, apoptosis, and ER stress in hepatocytes. Additionally, MA treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and markers of autophagy. Importantly, when AMPK was inhibited by small interfering RNA (siRNA) or autophagy was blocked by 3-methyladenine (3MA), the protective effects of MA against ER stress, lipogenic lipid deposition, and apoptosis in palmitate-treated hepatocytes were abolished. These results suggest that MA mitigates hepatic steatosis in obesity through an AMPK/autophagy-dependent pathway. The present study highlights the potential of MA as a promising therapeutic candidate for hepatic steatosis.


Assuntos
Proteínas Quinases Ativadas por AMP , Fígado Gorduroso , Animais , Camundongos , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Dieta Hiperlipídica/efeitos adversos , Células Hep G2 , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Palmitatos/metabolismo , Autofagia , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Estresse do Retículo Endoplasmático
8.
Biochem Pharmacol ; 216: 115768, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652106

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has been linked to fat accumulation in the liver and lipid metabolism imbalance. Sesamin, a lignan commonly found in sesame seed oil, possesses antioxidant, anti-inflammatory, and anticancer properties. However, the precise mechanisms by which sesamin prevents hepatic steatosis are not well understood. This study aimed to explore the molecular mechanisms by which sesamin may improve lipid metabolism dysregulation. A in vitro hepatic steatosis model was established by exposing HepG2 cells to palmitate sodium. The results showed that sesamin effectively mitigated lipotoxicity and reduced reactive oxygen species production. Additionally, sesamin suppressed lipid accumulation by regulating key factors involved in lipogenesis and lipolysis, such as fatty acid synthase (FASN), sterol regulatory element-binding protein 1c (SREBP-1c), forkhead box protein O-1, and adipose triglyceride lipase. Molecular docking results indicated that sesamin could bind to estrogen receptor α (ERα) and reduce FASN and SREBP-1c expression via the Ca2+/calmodulin-dependent protein kinase kinase ß (CaMKKß)/AMP-activated protein kinase (AMPK) signaling pathway. Sesamin attenuated palmitate-induced lipotoxicity and regulated hepatic lipid metabolism in HepG2 cells by activating the ERα/CaMKKß/AMPK signaling pathway. These findings suggest that sesamin can improve lipid metabolism disorders and is a promising candidate for treating hepatic steatosis.


Assuntos
Lignanas , Hepatopatia Gordurosa não Alcoólica , Humanos , Receptor alfa de Estrogênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Simulação de Acoplamento Molecular , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lignanas/farmacologia , Metabolismo dos Lipídeos , Células Hep G2 , Transdução de Sinais , Palmitatos/metabolismo
9.
J Nutr ; 153(10): 2915-2928, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652286

RESUMO

BACKGROUND: Metabolic diseases are often associated with muscle atrophy and heightened inflammation. The whey bioactive compound, glycomacropeptide (GMP), has been shown to exhibit anti-inflammatory properties and therefore may have potential therapeutic efficacy in conditions of skeletal muscle inflammation and atrophy. OBJECTIVES: The purpose of this study was to determine the role of GMP in preventing lipotoxicity-induced myotube atrophy and inflammation. METHODS: C2C12 myoblasts were differentiated to determine the effect of GMP on atrophy and inflammation and to explore its mechanism of action in evaluating various anabolic and catabolic cellular signaling nodes. We also used a lipidomic analysis to evaluate muscle sphingolipid accumulation with the various treatments. Palmitate (0.75 mM) in the presence and absence of GMP (5 µg/mL) was used to induce myotube atrophy and inflammation and cells were collected over a time course of 6-24 h. RESULTS: After 24 h of treatment, GMP prevented the palmitate-induced decrease in the myotube area and myogenic index and the increase in the TLR4-mediated inflammatory genes tumor necrosis factor-α and interleukin 1ß. Moreover, phosphorylation of Erk1/2, and gene expression of myostatin, and the E3 ubiquitin ligases, FBXO32, and MuRF1 were decreased with GMP treatment. GMP did not alter palmitate-induced ceramide or diacylglycerol accumulation, muscle insulin resistance, or protein synthesis. CONCLUSIONS: In summary, GMP prevented palmitate-induced inflammation and atrophy in C2C12 myotubes. The GMP protective mechanism of action in muscle cells during lipotoxic stress may be related to targeting catabolic signaling associated with cellular stress and proteolysis but not protein synthesis.


Assuntos
Palmitatos , Soro do Leite , Humanos , Soro do Leite/metabolismo , Palmitatos/toxicidade , Palmitatos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Fragmentos de Peptídeos , Inflamação/metabolismo
10.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982168

RESUMO

Obesity and elevated blood free fatty acid (FFA) levels lead to impaired insulin action causing insulin resistance in skeletal muscle, and contributing to the development of type 2 diabetes mellitus (T2DM). Mechanistically, insulin resistance is associated with increased serine phosphorylation of the insulin receptor substrate (IRS) mediated by serine/threonine kinases including mTOR and p70S6K. Evidence demonstrated that activation of the energy sensor AMP-activated protein kinase (AMPK) may be an attractive target to counteract insulin resistance. We reported previously that rosemary extract (RE) and the RE polyphenol carnosic acid (CA) activated AMPK and counteracted the FFA-induced insulin resistance in muscle cells. The effect of rosmarinic acid (RA), another polyphenolic constituent of RE, on FFA-induced muscle insulin resistance has never been examined and is the focus of the current study. Muscle cell (L6) exposure to FFA palmitate resulted in increased serine phosphorylation of IRS-1 and reduced insulin-mediated (i) Akt activation, (ii) GLUT4 glucose transporter translocation, and (iii) glucose uptake. Notably, RA treatment abolished these effects, and restored the insulin-stimulated glucose uptake. Palmitate treatment increased the phosphorylation/activation of mTOR and p70S6K, kinases known to be involved in insulin resistance and RA significantly reduced these effects. RA increased the phosphorylation of AMPK, even in the presence of palmitate. Our data indicate that RA has the potential to counteract the palmitate-induced insulin resistance in muscle cells, and further studies are required to explore its antidiabetic properties.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células Musculares/metabolismo , Fosforilação , Palmitatos/metabolismo , Ácido Rosmarínico
11.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982731

RESUMO

Diabetes is a chronic disease that affects glucose metabolism, either by autoimmune-driven ß-cell loss or by the progressive loss of ß-cell function, due to continued metabolic stresses. Although both α- and ß-cells are exposed to the same stressors, such as proinflammatory cytokines and saturated free fatty acids (e.g., palmitate), only α-cells survive. We previously reported that the abundant expression of BCL-XL, an anti-apoptotic member of the BCL-2 family of proteins, is part of the α-cell defense mechanism against palmitate-induced cell death. Here, we investigated whether BCL-XL overexpression could protect ß-cells against the apoptosis induced by proinflammatory and metabolic insults. For this purpose, BCL-XL was overexpressed in two ß-cell lines-namely, rat insulinoma-derived INS-1E and human insulin-producing EndoC-ßH1 cells-using adenoviral vectors. We observed that the BCL-XL overexpression in INS-1E cells was slightly reduced in intracellular Ca2+ responses and glucose-stimulated insulin secretion, whereas these effects were not observed in the human EndoC-ßH1 cells. In INS-1E cells, BCL-XL overexpression partially decreased cytokine- and palmitate-induced ß-cell apoptosis (around 40% protection). On the other hand, the overexpression of BCL-XL markedly protected EndoC-ßH1 cells against the apoptosis triggered by these insults (>80% protection). Analysis of the expression of endoplasmic reticulum (ER) stress markers suggests that resistance to the cytokine and palmitate conferred by BCL-XL overexpression might be, at least in part, due to the alleviation of ER stress. Altogether, our data indicate that BCL-XL plays a dual role in ß-cells, participating both in cellular processes related to ß-cell physiology and in fostering survival against pro-apoptotic insults.


Assuntos
Citocinas , Células Secretoras de Insulina , Animais , Humanos , Ratos , Apoptose/genética , Linhagem Celular , Citocinas/metabolismo , Células Secretoras de Insulina/metabolismo , Palmitatos/farmacologia , Palmitatos/metabolismo
12.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G341-G353, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36852918

RESUMO

Hepatic lipotoxicity plays a central role in the pathogenesis of nonalcoholic fatty liver disease; however, the underlying mechanisms remain elusive. Here, using both cultured hepatocytes (AML-12 cells and primary mouse hepatocytes) and the liver-specific gene knockout mice, we investigated the mechanisms underlying palmitate-elicited upregulation of CD36, a class B scavenger receptor mediating long-chain fatty acids uptake, and its role in palmitate-induced hepatolipotoxicity. We found that palmitate upregulates hepatic CD36 expression. Despite being a well-established target gene of PPARγ transactivation, our data demonstrated that the palmitate-induced CD36 upregulation in hepatocytes is in fact PPARγ-independent. We previously reported that the activation of ATF4, one of three canonical pathways activated upon endoplasmic reticulum (ER) stress induction, contributes to palmitate-triggered lipotoxicity in hepatocytes. In this study, our data revealed for the first time that ATF4 plays a critical role in mediating hepatic CD36 expression. Genetic inhibition of ATF4 attenuated CD36 upregulation induced by either palmitate or ER stress inducer tunicamycin in hepatocytes. In mice, tunicamycin upregulates liver CD36 expression, whereas hepatocyte-specific ATF4 knockout mice manifest lower hepatic CD36 expression when compared with control animals. Furthermore, we demonstrated that CD36 upregulation upon palmitate exposure represents a feedforward mechanism in that siRNA knockdown of CD36 in hepatocytes blunted ATF4 activation induced by both palmitate and tunicamycin. Finally, we confirmed that the ATF4-CD36 pathway activation contributes to palmitate-induced hepatolipotoxicity as genetic inhibition of either ATF4 or CD36 alleviated cell death and intracellular triacylglycerol accumulation. Collectively, our data demonstrate that CD36 upregulation by ATF4 activation contributes to palmitate-induced hepatic lipotoxicity.NEW & NOTEWORTHY We provided the initial evidence that ATF4 is a principal transcription factor mediating hepatic CD36 expression in that both palmitate- and ER stress-elicited CD36 upregulation was blunted by ATF4 gene knockdown in hepatocytes, and hepatocyte-specific ATF4 knockout mice manifested lower hepatic CD36 expression. We further confirmed that the ATF4-CD36 pathway activation contributes to palmitate-induced hepatolipotoxicity as genetic inhibition of either ATF4 or CD36 alleviated cell death and intracellular triacylglycerol accumulation in response to exogenous palmitate exposure.


Assuntos
PPAR gama , Palmitatos , Animais , Camundongos , Palmitatos/toxicidade , Palmitatos/metabolismo , Regulação para Cima , Ativação Transcricional , PPAR gama/metabolismo , Tunicamicina/metabolismo , Hepatócitos/metabolismo , Estresse do Retículo Endoplasmático , Camundongos Knockout , Triglicerídeos/metabolismo
13.
Int J Cardiol ; 378: 77-88, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36804762

RESUMO

BACKGROUND AND AIM: Autophagy has recently emerged as a potential and promising therapeutic approach to maintain cardiac cellular homeostasis. The aim of the present study was to investigate the role of autophagy in the ischemic-reperfused atrial myocardium. METHODS: Isolated rat left atria subjected to simulated ischemia-reperfusion were used. The bathing medium contained either 10 mM d-glucose or 10 mM d-glucose and 1.2 mM palmitate. 3-methyladenine (3-MA) was used as pharmacological autophagy inhibitor. RESULTS: LC3-II/LC3-I ratio, an indicator of autophagosome formation, was significantly enhanced during reperfusion, this increase being slowed by the exposure to high palmitate concentration and prevented by 3-MA. Beclin-1 was significantly increased during reperfusion period in both metabolic conditions, and pharmacological inhibition of AMPK partially prevented LC3-II/LC3-I ratio increase. Autophagy inhibition significantly increased mitochondrial damage and impaired mitochondrial ATP synthesis rate at reperfusion. Tissue ATP content recovery and contractile reserve were also reduced during this period, these effects being more pronounced either in 3-MA treated atria and ischemic-reperfused atria incubated with palmitate. Moreover, severe tachyarrhythmias were observed in the presence of 3-MA, in both metabolic conditions. This phenomenon was partially prevented by mitochondrial inner membrane ion channels blocker, PK11195. CONCLUSION: Present study provides new insights into the role of autophagy in ischemic-reperfused atrial myocardium. The observation of greater deterioration in mitochondrial structure and function when this process was inhibited, suggests an association between autophagy and the structural and functional preservation of mitochondria. Exogenous metabolic substrates, to which the myocardium is exposed during ischemia-reperfusion, might not affect this process.


Assuntos
Fibrilação Atrial , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Fibrilação Atrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Átrios do Coração , Autofagia , Isquemia/metabolismo , Trifosfato de Adenosina/metabolismo , Palmitatos/metabolismo , Palmitatos/farmacologia , Palmitatos/uso terapêutico , Glucose/metabolismo
14.
Biochem Biophys Res Commun ; 643: 129-138, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36603530

RESUMO

There is an alarming increase in incidence of fatty liver disease worldwide. The fatty liver disease spectrum disease ranges from simple steatosis (NAFL) to steatohepatitis (NASH) which culminates in cirrhosis and cancer. Altered metabolism is a hallmark feature associated with fatty liver disease and palmitic acid is the most abundant saturated fatty acid, therefore, the aim of this study was to compare metabolic profiles altered in hepatocytes treated with palmitic acid and also the differentially expressed plasma metabolites in spectrum of nonalcoholic fatty liver. The metabolites were analyzed by liquid chromatography-mass spectrometry (LC-MS) platform. Hepatocyte cell lines PH5CH8 and HepG2 cells when treated with 400 µM dose of palmitic acid showed typical features of steatosis. Metabolomic analysis of lipid treated hepatocyte cell lines showed differential changes in phenylalanine and tyrosine pathways, fatty acid metabolism and bile acids. The key metabolites tryptophan, kynurenine and carnitine differed significantly between subjects with NAFL, NASH and those with cirrhosis. As the tryptophan-kynurenine axis is also involved in denovo synthesis of NAD+, we found significant alterations in the NAD+ related metabolites in both palmitic acid treated and also fatty liver disease with cirrhosis. The study underscores the importance of amino acid and NAD+supplementation as promising strategies in fatty liver disorder.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , NAD/metabolismo , Aminoácidos/metabolismo , Palmitatos/metabolismo , Cinurenina/metabolismo , Triptofano/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/patologia , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Fígado/metabolismo
15.
Biochem Biophys Res Commun ; 647: 55-61, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36716646

RESUMO

Dipeptidyl peptidase 4 (DPP-IV) is a ubiquitous proteolytic enzyme that cleaves incretin hormones, such as glucagon-like peptide 1 (GLP1) and gastric inhibitory protein (GIP), leading to reduced glucose stimulated insulin secretion from the pancreatic beta cells. The functionally active enzyme is present in a membrane bound form in several cell types as well as in a soluble form in the circulation. The present report deals with DPP-IV expression and its regulation in the pancreatic beta cells in presence of free fatty acids (FFAs) and Fetuin-A, a circulatory glycoprotein associated with insulin resistance in humans and animals. FFA and Fetuin-A individually or in combination trigger DPP-IV expression in MIN6 cells. Islets isolated from high fat diet fed (HFD) mice (16 weeks) showed higher levels of DPP-IV expression than standard diet (SD) fed mice. Fetuin-A increased DPP-IV expression in HFD mice (4 weeks). Inhibition of TLR4 or NFkB prevented palmitate-Fetuin-A mediated DPP-IV expression in MIN6. It has been seen that Fetuin-A alone also could trigger DPP-IV expression in MIN6 cells via NFkB. Additionally, palmitate treatment exhibited reduced level of soluble DPP-IV in the media of MIN6 culture, which corroborated with the expression pattern of its protease, KLK5 that cleaves and releases the membrane bound DPP-IV into the secretion. Our results demonstrate that FFA-Fetuin-A upregulates DPP-IV expression in the pancreatic beta cells through the TLR4-NFkB pathway.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Células Secretoras de Insulina , Humanos , Animais , Camundongos , Células Secretoras de Insulina/metabolismo , alfa-2-Glicoproteína-HS/metabolismo , Receptor 4 Toll-Like/metabolismo , Dipeptidil Peptidase 4/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Palmitatos/metabolismo , Insulina/metabolismo
16.
J Pathol ; 259(3): 291-303, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36441400

RESUMO

A low-grade and persistent inflammation, which is the hallmark of obesity, requires the participation of NLRP3 and cell death. During Mycobacterium tuberculosis infection, NLRP3 signaling is important for bacterial killing by macrophages in vitro but was shown to be dispensable for host protection in vivo. We hypothesized that during obesity-tuberculosis (TB) comorbidity, NLRP3 signaling might play a detrimental role by inducing excessive inflammation. We employed a model of high-fat-diet-induced obesity, followed by M. tuberculosis infection in C57BL/6 mice. Obese mice presented increased susceptibility to infection and pulmonary immunopathology compared to lean mice. Using treatment with NLRP3 antagonist and Nlrp3-/- mice, we showed that NLRP3 signaling promoted cell death, with no effect in bacterial loads. The levels of palmitate were higher in the lungs of obese infected mice compared to lean counterparts, and we observed that this lipid increased M. tuberculosis-induced macrophage death in vitro, which was dependent on NLRP3 and caspase-1. At the chronic phase, although lungs of obese Nlrp3-/- mice showed an indication of granuloma formation compared to obese wild-type mice, there was no difference in the bacterial load. Our findings indicate that NLRP3 may be a potential target for host-directed therapy to reduce initial and severe inflammation-mediated disease and to treat comorbidity-associated TB. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Palmitatos/metabolismo , Camundongos Endogâmicos C57BL , Tuberculose/patologia , Pulmão/patologia , Inflamação/patologia , Obesidade/metabolismo , Morte Celular , Comorbidade
17.
EMBO J ; 42(2): e111268, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36408830

RESUMO

Reprogramming of lipid metabolism is emerging as a hallmark of cancer, yet involvement of specific fatty acids (FA) species and related enzymes in tumorigenesis remains unclear. While previous studies have focused on involvement of long-chain fatty acids (LCFAs) including palmitate in cancer, little attention has been paid to the role of very long-chain fatty acids (VLCFAs). Here, we show that depletion of acetyl-CoA carboxylase (ACC1), a critical enzyme involved in the biosynthesis of fatty acids, inhibits both de novo synthesis and elongation of VLCFAs in human cancer cells. ACC1 depletion markedly reduces cellular VLCFA but only marginally influences LCFA levels, including palmitate that can be nutritionally available. Therefore, tumor growth is specifically susceptible to regulation of VLCFAs. We further demonstrate that VLCFA deficiency results in a significant decrease in ceramides as well as downstream glucosylceramides and sphingomyelins, which impairs mitochondrial morphology and renders cancer cells sensitive to oxidative stress and cell death. Taken together, our study highlights that VLCFAs are selectively required for cancer cell survival and reveals a potential strategy to suppress tumor growth.


Assuntos
Neoplasias , Estearatos , Humanos , Estearatos/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Palmitatos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
18.
Diabetes ; 72(1): 45-58, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191509

RESUMO

The functional mass of insulin-secreting pancreatic ß-cells expands to maintain glucose homeostasis in the face of nutrient excess, in part via replication of existing ß-cells. Type 2 diabetes appears when these compensatory mechanisms fail. Nutrients including glucose and fatty acids are important contributors to the ß-cell compensatory response, but their underlying mechanisms of action remain poorly understood. We investigated the transcriptional mechanisms of ß-cell proliferation in response to fatty acids. Isolated rat islets were exposed to 16.7 mmol/L glucose with or without 0.5 mmol/L oleate (C18:1) or palmitate (C16:0) for 48 h. The islet transcriptome was assessed by single-cell RNA sequencing. ß-Cell proliferation was measured by flow cytometry. Unsupervised clustering of pooled ß-cells identified different subclusters, including proliferating ß-cells. ß-Cell proliferation increased in response to oleate but not palmitate. Both fatty acids enhanced the expression of genes involved in energy metabolism and mitochondrial activity. Comparison of proliferating versus nonproliferating ß-cells and pseudotime ordering suggested the involvement of reactive oxygen species (ROS) and peroxiredoxin signaling. Accordingly, N-acetyl cysteine and the peroxiredoxin inhibitor conoidin A both blocked oleate-induced ß-cell proliferation. Our study reveals a key role for ROS signaling through peroxiredoxin activation in oleate-induced ß-cell proliferation.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Ratos , Animais , Ácidos Graxos/farmacologia , Ácidos Graxos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Oleico/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Proliferação de Células , Palmitatos/metabolismo , Glucose/metabolismo , Análise de Sequência de RNA , Ilhotas Pancreáticas/metabolismo
19.
Nutrients ; 14(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500977

RESUMO

Human milk synthesis is impacted by maternal diet, serum composition, and substrate uptake and synthesis by mammary epithelial cells (MECs). The milk of obese/high-fat-diet women has an increased fat content, which promote excess infant weight gain and the risk of childhood/adult obesity. Yet, the knowledge of milk synthesis regulation is limited, and there are no established approaches to modulate human milk composition. We established a 3-dimensional mouse MEC primary culture that recreates the milk production pathway and tested the effects of the major saturated fatty acid in human milk (palmitate) and a lipoprotein lipase inhibitor (orlistat) on triglyceride production. Positive immunostaining confirmed the presence of milk protein and intracellular lipid including milk globules in the cytoplasm and extracellular space. The treatment with palmitate activated "milk" production by MECs (ß-casein) and the lipid pathway (as evident by increased protein and mRNA expression). Consistent with these cellular changes, there was increased secretion of milk protein and triglyceride in MEC "milk". The treatment with orlistat suppressed milk triglyceride production. Palmitate increased milk and lipid synthesis, partly via lipoprotein lipase activation. These findings demonstrate the ability to examine MEC pathways of milk production via both protein and mRNA and to modulate select pathways regulating milk composition in MEC culture.


Assuntos
Lipase Lipoproteica , Glândulas Mamárias Animais , Adulto , Animais , Feminino , Camundongos , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Lactação/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/metabolismo , Leite Humano/metabolismo , Orlistate/farmacologia , Orlistate/metabolismo , Palmitatos/metabolismo , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo
20.
Mol Metab ; 66: 101644, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36436807

RESUMO

OBJECTIVE: Hyperferremia and hyperferritinemia are observed in patients and disease models of type 2 diabetes mellitus (T2DM). Likewise, patients with genetic iron overload diseases develop diabetes, suggesting a tight link between iron metabolism and diabetes. The liver controls systemic iron homeostasis and is a central organ for T2DM. Here, we investigate how the control of iron metabolism in hepatocytes is affected by T2DM. METHODS: Perls Prussian blue staining was applied to analyze iron distribution in liver biopsies of T2DM patients. To identify molecular mechanisms underlying hepatocyte iron accumulation we established cellular models of insulin resistance by treatment with palmitate and insulin. RESULTS: We show that a subset of T2DM patients accumulates iron in hepatocytes, a finding mirrored in a hepatocyte model of insulin resistance. Iron accumulation can be explained by the repression of the iron exporter ferroportin upon palmitate and/or insulin treatment. While during palmitate treatment the activation of the iron regulatory hormone hepcidin may contribute to reducing ferroportin protein levels in a cell-autonomous manner, insulin treatment decreases ferroportin transcription via the PI3K/AKT and Ras/Raf/MEK/ERK signaling pathways. CONCLUSION: Repression of ferroportin at the transcriptional and post-transcriptional level may contribute to iron accumulation in hepatocytes observed in a subset of patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulinas , Sobrecarga de Ferro , Humanos , Ferro/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sobrecarga de Ferro/metabolismo , Hepatócitos/metabolismo , Palmitatos/metabolismo , Insulinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA